hirdetés
hirdetés
2020. augusztus. 13., csütörtök - Ipoly.
hirdetés

Versenyfutás a koronavírus-vakcináért

A jelenlegi járványt okozó koronavírus elleni vakcinajelöltek közül tíz már emberi kipróbálás alatt van. Az oltóanyag-fejlesztés korábban nem látott gyorsasággal zajlik. Melyek a legaggasztóbb problémák, amelyekkel a kutatók szembesülnek, és miben reménykedhetünk mégis? A kérdéseket Ferenci Tamás biostatisztikus válaszolja meg az mta.hu számára írt összeállításában.

hirdetés

A jelenlegi járványt okozó koronavírus elleni oltóanyag-fejlesztési próbálkozások jelentékeny része nem a „klasszikus” technikákon alapszik. A WHO folyamatosan frissített összefoglalója 2020. június 2-án az összes koronavírus elleni oltóanyaggal kapcsolatban 133 kutatást sorol fel, ebből mindössze 3 élő-gyengített és 9 teljes elölt kórokozós. A teljes elöltekből 4 is klinikai fázisban van, tehát már emberen próbálják ki őket, az élő-gyengítettekből egy sem. Összesen 46 kutatás próbálkozik subunit vakcinával, ám ezekből mindössze 1 van klinikai fázisban (összesen 10 vakcinajelölt van klinikai fázisban).

De akkor mi teszi ki a próbálkozási irányok maradék részét?

A legújabb irány: nukleinsav-alapú vakcinák

Az egyik csapásirány a DNS/RNS vakcina. Ezek a vakcinák hasonlítanak a protektív antigént tartalmazó, elölt kórokozós oltóanyagokhoz, csak épp a protektív antigén szervezetbe való bejuttatását sokkal „cselesebben” oldják meg. Az alapötlet a következő: Fogjuk az antigént, ami jelen esetben tipikusan a koronavírus S-nek nevezett burokfehérjéje – ez az, amely a sejtekhez kapcsolja a vírust. (Azért ezt, mert azt reméljük, hogy az ez ellen kifejlesztett immunitás véd a betegséggel szemben is.) Az S egy fehérje, azaz egy olyan molekula, amelyben aminosavak vannak összekapcsolva adott sorrendben. Ezt a jól meghatározott sorrendű aminosavláncot a fehérjét kódoló gén DNS-ét alkotó, ún. bázisok sorrendje biztosítja, úgy szokták mondani: kódolja (ugyanis e bázisok minden lehetséges kombinációjához tartozik egy aminosav, az egész olyan, mint egy kódkönyv). Az S fehérje esetében tudjuk, hogy milyen bázissorrend kódolja, sőt a jó hír, hogy a technológia ma már azt is lehetővé teszi, hogy ezen információ birtokában különösebb gond nélkül gyártsunk is laborban ilyen, épp az S fehérjét kódoló DNS-t. Elegendő ezt a DNS-t bejuttatni a szervezetbe, és ezzel, ha ügyesek vagyunk, rávehetjük a sejteket, hogy ennek alapján ugyanúgy termeljenek fehérjét, ahogy azt „üzemszerűen” teszik a szervezet saját DNS-e alapján. A megoldást apró, kör alakú DNS-darabok, ún. plazmidok sejtbe juttatása jelenti (a plazmidok nem épülnek be a sejt kromoszómáiba, de ugyanúgy termelik a fehérjéket, mint a kromoszómán lévő, „szokásos” gének). Láthatjuk tehát, hogy az alapelv itt is az, hogy egy protektív antigént bemutassunk az immunrendszernek, csak épp nem kívülről adjuk be, hanem az emberi sejtekkel, a „helyszínen” termeltetjük meg. (Természetesen a dolognak milliónyi kihívása és nehézsége van.)

Az RNS-vakcina egy ehhez nagyon hasonló koncepció, csak itt a „DNS-ből fehérje” átalakítás egy közbenső lépését, az RNS-t használjuk; lényegében eggyel előkészítettebb formában adjuk be a szervezetnek a „fehérjegyártási utasításokat”. Ennek vannak bizonyos előnyei a DNS-vakcinákhoz képest (mindenekelőtt az, hogy – a DNS-sel szemben – az RNS-t nem kell magába a sejtmagba bejuttatni, ami egy sor biztonsági aggályt megszüntet), de a fő kérdés itt is az RNS bejuttatása és annak elérése, hogy ennek alapján meginduljon a fehérjetermelés. Erre legtöbbször ún. lipid-nanorészecskéket használnak.

A már említett WHO-összefoglaló alapján a mostani koronavírus ellen jelenleg 11 DNS-vakcina van fejlesztés alatt, ebből 1 klinikai fázisban, és 17 RNS-vakcina, ebből 2 klinikai fázisban.

A teljes cikk az MTA honlapján

(forrás: MTA)
hirdetés
Olvasói vélemény: 0,0 / 10
Értékelés:
A cikk értékeléséhez, kérjük először jelentkezzen be!
hirdetés
hirdetés